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ABSTRACT 

 
A multi-level (multi-scale/multi-functional) evaluation is demonstrated by applying it to three 
different sample problems. These problems include the probabilistic evaluation of a space shuttle 
main engine blade, an engine rotor and an aircraft wing. The results demonstrate that the blade 
will fail at the highest probability path, the engine two-stage rotor will fail by fracture at the rim 
and the aircraft wing will fail at 109 fatigue cycles with a probability of 0.9967. 
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1. INTRODUCTION 
 
Fatigue life of structural components is a combination of local material characteristics and 
structural component configuration. The local material characteristics include grain structures, 
grain boundaries, grain size and attendant strengths, fracture toughness, etc. These in turn are 
very much controlled by the specific fabrication process that was used to make the material as 
well as the manufacturing procedure that was used to manufacture the structural component – 
multi-functional. The structural configuration of the component includes the geometric shape, 
the supports and the loading conditions (mechanical, thermal, dynamic, etc.). The variables used 
to describe both the material characteristics and the structured configuration do not have single 
values, but some scatter about mean values and certainly need multi-scale mechanics 
formulations. Most of the multi-scale mechanics formulations used to predict fatigue life 
(damage initiation, propagation, slow growth, and unstable state and/or fast growth) assumes 
single values for all participating variables. However, fatigue life data shows considerable 
scatter. The scatter is usually bounded predicatively by author-favorite method and is usually 
curve-fitted with the data scatter. It is very desirable, therefore, to have a multi-scale predictive 
method that can bind the data based on the scatter ranges in the fundamental different scales 
variables and the structural components variables that were mentioned previously. The objective 
of the proposed paper is to describe one multi-level method (multi-scale/multi-functional) that 
has been used with some success to a priori predict fatigue life of structural components. The 
method is a judicious combination of multi-scale composite mechanics, finite element structural 
analysis, fracture mechanics concepts, probabilistic concepts and efficient computational 
algorithms. The multi-scale composite mechanics in particular include a multi-factor interaction 
model that describes the material degradation from attendant service environment factors. In 
essence, the multi-level method is a computational simulation procedure (multi-scale/multi-
functional) that is illustrated by applying it to an engine blade, to an engine two-stage rotor, and  
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to an aircraft wing. Results show that the blade will fracture along a most probable fracture path,  
the rotor will fracture due to multiple fracture modes, and a build-up aircraft wing will fail at 109 
fatigue cycles with a probability of 0.9967. 
 

2. FUNDAMENTAL CONSIDERATION 
 
Every structure does not fail instantaneously. It fails initially gradually and then it speeds up to 
its final collapse state. In a computational simulation scheme each one of this type of behavior is 
characterized by time scales. There is a time scale where the structure may remain intact for 
several hours. The second stage is when the structure exhibits observable initial damage. A 
different time scale characterized the initial linear growth. Another one characterizes the constant 
growth and finally the last one which characterizes the rapid growth to fracture (Fig. 1). The 
truly predictive computational simulation scheme should be able to transcend all the above time 
scales continuously from the smallest (material local behavior, non-observable) to the largest 
scale (structural) which is definitely observable. What that approach will then require is to 
combine the material behavior through all the structure (multi-functional) and through all the 
different scales (multi-scale). Composite structures subjected to fatigue inherently contain both 
of these (multi-level). A composite structure is naturally multi-scale because of its angle ply 
configuration and at the same time is a multi-functional since each ply may be from different 
constituents (fibers/matrices) different fiber volume ration as well as different void volume ratio. 
Similar comments can be made of metallic structures subjected to different failure criteria. The 
subsequent discussion describes the probabilistic simulation of two metallic structures and one 
composite built-up aircraft structure. 
 
 

 
 
 



3. MULTI-FACTOR SIMULATION MODEL 
 
The multi-factors that influence a metered behavior are represented by a multifactor interaction 
model of multiplicative form where each factor is expressed in expanded form, as shown in 
Figures 2 and 3. The exponents are selected so that they satisfy the initial and final conditions, 
Reference 1. The exponent can have any value which describes the factor behavior from its 
initial value to its final value as shown in Figure 4. There are two restrictions in selecting 
exponents: One is that they only can take positive values and the second is that the factor within 
the parenthesis must have absolute value. The material degradation behavior of both the metallic 
structures and the composite aircraft component structure are characterized by the multi-factor 
interaction model. 
 

 
 

 



 
 

4. PROBABILISTIC COMPUTATIONAL SIMULATION 
 

The probabilistic simulation (Reference 2) cycle of a multilayer composite structure (multi-
scale) is graphically illustrated in Figure 5. The deterministic equations to perform the 
simulation depicted in Figure 5 are summarized in Figure 6. Results obtained for a 
deterministic simulation are show in Figure 7. Figure 7 is very important because it 
illustrated all the multi-functional, multi-scale (multi-level) simulations described above and 
it is also similar in shape to Figure 1. 

 
5. MULTI-FUNCTIONAL/MULTI-SCALE SIMULATION  

OF TURBINE BLADE 
 

A space shuttle main engine blade which demonstrates a multi-lever simulation is shown 
schematically in Figure 8. The blade is subjected to variable pressures and temperatures and 
rotational load as illustrated in Figure 9. The probabilistic damage propagation path which 
has the largest probability (0.0002) of occurring is illustrated in Figure 10. The frequency 
degradation along this path is shown graphically in Figure 11. Each portion in this figure 
illustrates the degradation in each of the four first frequencies for a total of four frequencies. 
This figure is very important because it graphically illustrates the damage degradation which 
occurs in each frequency with its respective probability. For example, the first frequency will 
degrade at the mean from about 5500 to 1500 cycles per second (cps) as it approached 
fracture. The degradation qualifies for on board health monitoring with such dramatic drop. 
The fourth frequency with substantial lower amplitude will degrade at the mean from about 
15,000 to 3,000 cps. This is a much greater decrease. However, the instrumentation required 
to measure these low amplitude frequencies may be limited.  



 
 
 

 
 
 
 

 
 
 
 
 



 
 
 

 
 
 
 

 
 
 
 
 
 



 
 
 

 
 
 
 

 



 
 

 
 
Another important measure in the highest probability path is the strain energy release rate as 
the damage progresses from no damage to its final value. This plot is illustrated in Figure 12. 
This plot is another important result because illustrates probabilistic fracture toughness of the 
material from which the blade is made. For example, the last point before the damage starts 
increasing very rapidly is point 3 which corresponds to finite element node number 14. The 
fracture toughness is measured at the instant the material damage starts to grow very rapidly, 
the measurement of which is very intricate. In this simulation the fracture toughness is about 



20 lb.-in. and a critical corresponding length of about one-half of the blade width. The very 
important observation in this discussion is that the fracture toughness is obtained as a by-
product of the analysis without usage of intricate instrumentations, specimen preparation and 
careful measurement. In addition, the fracture path is evaluated probabilistically.  
 
The second metallic example is two adjacent discs as is illustrated in Figure 13. The 
probabilistic simulation of the example requires both multi-functional and multi-scale. Multi-
functional because of the different analyses included in the bottom of the figure and the 
multi-scale because of the different components. As is seen in this figure, the fracture at the 
rim has the largest probability and coincides, almost, with the system failure probability. This 
fracture mode is that of the rim which holds the blades. Note that the fractures evaluated are 
identified at the bottom of the figure. They include: (1) disc burst, (2) fracture at the bore, (3) 
fracture at the rim, and (4) progressive damage of the ring in yield. The ring ties the two 
discs. Note that the insert to the right of the figure represents the survival probability as a 
function of the exhausted resistance. The multi-scale is illustrated in Figure 14 which shows 
the probabilistic sensitivities at failure listed from the highest to the lowest. This figure is 
instructive in that it illustrates that the fracture toughness parameters RKIC right toughness, 
Kt stress concentration, A0 initial damage size, A-LCF low cycle fatigue and N1 number of 
cycles are relatively low valued varying from 0.0731 to about 810-6, respectively. What can 
we learn from these sensitivities is that fracture toughness has relatively low significance as 
compared to other failure modes in the design of engine disc components. 
 
 

 
 



 
 

6. COMPOSITE AIRCRAFT WING 
 
The last example of multi-level probabilistic evaluation is a simulated composite wing. The 
multi-scale of this example is illustrated in Figure 15 which shows the span-wise 
construction and in Figure 16 which shows the loading conditions (multi-functional). It is 
observed in Figure 15 that the wing is 5.49 m (18 ft) long by a tapering width from 1.83 m 
(6 ft) at the root to 1.22 m (4 ft) at the tip. The sections in this figure indicate that the internal 
wing structure consists of three longitudinal spans and five bulkheads. The multi-scale 
simulation is represented by a finite element model whereas the multi-functional model is 
represented by the composite mechanics which describe the thermal and hygral properties in 
the composite at each one of its scales. 
 
The probabilistic results of the multi-level evaluation are shown in Figure 17 which depicts 
both the cumulative and the density probabilistic functions. The probability density function 
indicates that the mean value of this combined set of multi-functional evaluation is about 
8.5×106 cycles while the cumulative distribution shows that the wing will fail at about 9×106 
fatigue cycle with a probability of 0.9967. This evaluation demonstrates that both the multi-
functional and multi-scale composite problems can be evaluated by a judicious combination 
of composite mechanics, finite element analysis and expedient probabilistic algorithms. The 
probabilistic sensitivity factors of this multi-level problem are depicted in Figure 18. The 
figure summarizes these factors that have a relative significance of greater than 0.1. As is 
indicated in this figure, the greatest significance is the cyclic loading and the fiber volume 
ratio and the fiber modulus, and matrix shear strength of the skin followed by the fiber 
modulus and the fiber volume ration of the frame, the matrix tensile strength of the skin and 
the void volume ratio. The significance of this evaluation is that the multitude of information 
that comes out of a probabilistic evaluation. Note that in the sensitivity information the multi-
functional evaluation dominates the results.  



 
 
 

 
 
 
 

 



 
 
 

 
 
 

7. SUMMARY COMMENTS 
 
Probabilistic composite/metal structures are simulated by a multi-level simulation scheme. 
The multi-level evaluation includes all factors that influence component/system reliability. 
Multi-level is evaluated by the cumulative distribution function of the system response. 
Another important aspect of probabilistic multi-level evaluations is the probability 
sensitivities of all the variables that constitute the system design. The sensitivities are 
important because they are used to fine-tune the design and/or optimization variables in 
optimization evaluations. Probability multi-level evaluation coupled with progressive 
structural fracture is general for any multi-level materials and structure. Probabilistic multi-
level fracture determines safe-life and fail-safe, the damage tolerance of the structure with 
quantifiable probability of occurrence.  
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